
CS2100
Computer Organisation
C Programming
• int sumArray(int [], int);

int sumArray(int arr[], int size);

• fgets(str, size, stdin) // reads size-1 chars,
// or until ‘\n’ (then output will have ‘\n’)

scanf("%s", str); // reads until white space
puts(str); // terminates with newline
printf("%s\n", str);

• Operator precedence:
Operator Assoc

expr++ expr-- () [] . -> L to R
++expr --expr ! ~ (type) * & sizeof R to L

* / % L to R
+ - L to R

<< >> L to R
< <= > >= L to R

== != L to R
& L to R
∧ L to R
| L to R
&& L to R
|| L to R
?: R to L

= += -= *- /= %= <<= >>= &= ∧= |= R to L
, L to R

• ASCII values:
Char Dec Hex Bin
‘0’ 48 0x30 0b00110000
‘A’ 65 0x41 0b01000001
‘a’ 97 0x61 0b01100001

• Nice numbers:
215 − 1 = 32 767
216 − 1 = 65 535
231 − 1 = 2147 483 647
232 − 1 = 4294 967 295

Number Formats
Integer Formats
• Sign extension for fixed-point numbers:

1’s complement: extend sign bit to both left and right
2’s complement: extend sign bit to left and zeroes to right

• Addition:
Perform binary addition. For 1’s complement, add the
carry-out of MSB to LSB. For 2’s complement, ignore
carry-out of MSB. If A and B have the same sign but result
has opposite sign, overflow occurred. Additionally for 2’s
complement, if carry-in to MSB 6= carry-out of MSB,
overflow has occurred.

IEEE 754 Floating Point Format
MSB ←−−−−−−−−−−−−−−−−−−−−→ LSB
Sign Exponent Mantissa

Single-precision 1 bit 8 bits (excess-127) 23 bits
Double-precision 1 bit 11 bits (excess-1023) 52 bits

Instruction Set Architecture
• Big-endian: Most sig. byte in lowest address. (MIPS)

Little-endian: Least sig. byte in lowest address. (x86)

• Complex Instruction Set Computer (CISC)
- Single instruction performs complex operation
- Smaller program size as memory was premium
- Complex implementation, no room for hardware
optimization
Reduced Instruction Set Computer (RISC)
- Keep the instruction set small and simple, makes it easier
to build/optimize hardware
- Burden on software to combine simpler operations to
implement high-level language statements

• Stack architecture
- Operands are implicitly on top of the stack.
Accumulator architecture
- One operand is implicitly in the accumulator register.
General-purpose register architecture
- Only explicit operands.
- Register-memory architecture (one operand in memory).
- Register-register (or load-store) architecture.
Memory-memory architecture
- All operands in memory. Example: DEC VAX.

The Processor

Datapath & Control
• Datapath: Collection of components that process data;

performs the arithmetic, logical and memory operations

• Control: Tells the datapath, memory and I/O devices
what to do according to program instructions

Instruction Execution Cycle
1. Instruction Fetch: Get instruction from memory using

address from PC register
2. Instruction Decode: Find out the operation required
3. Operand Fetch: Get operands needed for operation
4. Execute: Perform the required operation
5. Result Write: Store the result of the operation

MIPS combines Decode and Operand Fetch;
MIPS splits Execute into ALU and Memory Access

Clock
• PC is read during the first half of the clock period and it is

updated with PC+4 at the next rising clock edge

Control Signals
RegDst Decode/Operand

Fetch
Select the destination
register number

RegWrite Decode/Operand
Fetch; RegWrite

Enable writing of regis-
ter

ALUSrc ALU Select the 2nd operand
for ALU

ALUControl ALU Select the operation to
be performed

MemRead /
MemWrite

Memory Enable reading/writing
of data memory

MemToReg RegWrite Select the result to be
written back to register
file

PCSrc Memory/RegWrite Select the next PC value

ALUOp Signal (2-bits)
lw & sw 00
beq 01
R-type 10

ALU Control Unit

ALUControl Signal (4-bits, MSB → LSB)
Ainvert (1 bit) Whether to invert 1st operand
Binvert (1 bit) Whether to invert 2nd operand
Operation (2 bits) 00 AND | 01 OR | 10 add | 11 slt

Boolean Algebra
Laws & Theorems
Identity A+0 = 0+A = A A · 1 = 1 ·A = A
Inverse/complement A + A′ = 1 A ·A′ = 0
Commutative A + B = B + A A ·B = B ·A
Associative
A + (B + C) = (A + B) + C A · (B · C) = (A ·B) · C
Distributive
A ·(B +C) = (A ·B)+(A ·C) A+(B ·C) = (A+B)·(A+C)

Idempotency X + X = X X ·X = X
One element / Zero element X + 1 = 1 X · 0 = 0
Involution (X ′)′ = X
Absorption X + X · Y = X X · (X + Y) = X
Absorption (var.) X + X ′ ·Y = X + Y X ·(X ′ +Y) = X ·Y
De Morgan’s (X + Y)′ = X ′ · Y ′ (X · Y)′ = X ′ + Y ′

Consensus
X · Y + X ′ · Z + Y · Z = X · Y + X ′ · Z
(X + Y) · (X ′ + Z) · (Y + Z) = (X + Y) · (X ′ + Z)

Minterms & Maxterms
• Minterm: m0 = X ′ · Y ′ · Z ′

• Maxterm: M0 = X + Y + Z

• m0′ = M0

• Sum of minterms:
∑

m(0, 2, 3) = m0 + m2 + m3

• Product of maxterms:
∏

M(0, 2, 3) = M0 ·M2 ·M3

•
∑

m(1, 4, 5, 6, 7) =
∏

M(0, 2, 3)

Gray Codes
• Single bit change from one code value to the next

• Standard gray code – formed by reflection

Logic Gates

• Fan-in: The number of inputs of a gate.

• Complete set of logic: Any set of gates sufficient for
building any boolean function.
e.g. {AND,OR,NOT}
e.g. {NAND} (self-sufficient / universal gate)
e.g. {NOR} (self-sufficient / universal gate)

• SOP expression – implement using 2-level AND-OR
circuit or 2-level NAND circuit

• POS expression – implement using 2-level OR-AND
circuit or 2-level NOR circuit

• Programmable Logic Array (PLA): 2-level AND-OR
array that can be “burned” to connect

Karnaugh Maps
• Implicant: Product term with all ‘1’ or ‘X’, but with at

least one ‘1’

• Prime implicant: Implicant which is not a subset of any
other implicant

• Essential prime implicant: Prime implicant with at
least one ‘1’ that is not in any other prime implicant

• Simplified SOP expression – group ‘1’s on K-map

• Simplified POS expression – find SOP expression using
‘0’s on K-map, then negate resulting expression

Logic Circuits
• Combinational circuit: each output depends entirely on

present inputs

• Sequential circuit: each output depends on both present
inputs and state

MSI Components
Decoder / Demultiplexer Encoder

Multiplexer 1 Multiplexer 2

• Decoder (n-to-m-line decoder): converts binary data from
n input lines to m ≤ 2n output lines
Each output line represents a minterm
Use OR-gates to implement (sum-of-minterms) functions

• Encoder: opposite of decoder
Exactly one input should be ‘1’

• Priority encoder: highest input takes precedence
All inputs ‘0’ is considered invalid
Exactly one input should be ‘1’

• Demultiplexer: directs data from input to a selected
output line based on n-bit selector
Demultiplexer ≡ Decoder with enable

• Multiplexer: selects one of 2n inputs to a single output
line, using n selection lines
To implement functions with n variables, pass variables to
the n-bit selector and set 2n inputs to appropriate
constants from truth table
To implement functions with n + 1 variables, pass first n
variables to the n-bit selector and set each input
appropriately to ‘0’, ‘1’, Z, or Z ′ (Z is the last variable)

Sequential Logic
• Synchronous: outputs change at specific time (with clock)

Asynchronous: outputs change at any time

• Multivibrator: sequential circuits that operate between
HIGH and LOW state
Bistable: 2 stable states (e.g. latch, flip-flop)
Monostable / one-shot: 1 stable state
Astable: no stable state (e.g. clock)

• Memory element: device that can remember value
indefinitely, or change value on command from its inputs

• Pulse-triggered: activated by +ve/−ve pulses (e.g. latch)
Edge-triggered: actv. by rising/falling edge (e.g. flip-flop)

• S-R latch (“Set-Reset”):
S R Q Q′

0 0 NC NC No change
1 0 1 0 Set
0 1 0 1 Reset
1 1 0 0 Invalid

• Gated S-R latch: Outputs change only when EN is HIGH

• Gated D latch (“Data”): Can build from gated S-R latch
No invalid input
state

• S-R flip-flop: Similar to gated S-R latch

• D flip-flop: Similar to gated D latch

• J-K flip-flop: J :“Set”, K :“Reset”, Toggle if both HIGH

• T flip-flop (“Toggle”): J-K flip-flop with tied inputs

• Asynchronous J-K flip-flop: Preset/Clear clock bypass

Memory
Fast, expensive, volatile ←−−−−−−−−→ Slow, cheap, non-volatile
Registers — Main memory — Disk storage — Magnetic tapes

(Optional memory enable
control signal)

Can be made into arrays
using decoder (more
words) or parallel
(increase word size)

Pipelining

• Processor Performance:
N stages; Tk time required for kth stage; I instructions
Single-cycle: total time = I ×

∑N
k=1 Tk

Multi-cycle: total time = I × (average CPI)×maxN
k=1 Tk

Pipeline: total time = (I+N−1)× (maxN
k=1 Tk + (overhead))

(CPI: cost per instruction (number of used stages))
(overhead: overhead for pipelining, e.g. pipeline register)

• MIPS Pipeline Stages:
IF (Instruction fetch)
ID (Instruction decode & register file read)
EX (Execute / address calculation)
MEM (Memory access)
WB (Write back)

• Pipeline registers between adjacent stages store both
data and control signals

Hazards
• Types of pipeline hazards:

Structural: Simultaneous use of hardware resource
Data: Data dependencies between instructions
Control: Change in program flow

• Read-after-write (RAW) dependency occurs when
later instr. reads from register written by an earlier instr.

• Read-after-write (RAW) data hazard occurs when
later instruction reads from register (strictly) before earlier
instruction writes to same register

• Result forwarding: happens in pipeline register
(in-between stages) to bypass register file; resolves all RAW
hazards except lw
- lw is resolved via stalling pipeline for one cycle
- sw after lw might not need to stall at all

• Control dependency: An instruction j is control
dependent on i if i controls whether or not j executes

• Reducing stall for branching:
Early branch resolution Move branch decision calculation
from EX/MEM to ID stage – stall 1 cycle instead of 3 (may
cause further stall if reg. is written by previous instruction)
Branch prediction: Guess the outcome and speculatively
execute instructions, if guess wrongly then flush pipeline
Delayed branch: X instructions following a branch will
always be executed regardless of outcome (requires compiler
re-ordering of instructions to branch-delay slot(s), or add
nop instructions)

Caching
Temporal locality: Same item tends to be re-referenced soon
Spatial locality: Nearby items tend to be referenced soon
Different locality for instructions & data

• Hit rate: fraction of memory accesses that are in cache

• (avg. access time) =
(hit rate)× (hit time) + (1− (hit rate))× (miss penalty)

• Cache block/line: smallest unit of transfer between
memory and cache

• Types of misses:
Cold/Compulsory: when the block has never been accessed
before
Conflict: same index gets overwritten (direct & set assoc.)
Capacity: cache cannot contain all blocks (full assoc.)

• Write policy:
Write-through: write data both to cache and main memory
- using a write buffer to queue memory writes
Write-back: write data to cache; write to main memory
when block is evicted
- using a “dirty bit” on each cache block

• Write miss policy:
Write allocate: load block to cache, then follow write policy
Write around: write directly to main memory

Direct Mapped Cache
←−−−−−−−−− Block number −−−−−−−−−→

Tag Index Offset
Cache blocks are identified by Tag&Index, and are stored at
location Index in the cache
Per-block overhead: Valid flag (1-bit) + Tag length
(Initially, all valid flags are unset)

N -Way Set Associative Cache
←−−−−−−−−− Block number −−−−−−−−−→

Tag Set Index Offset
A block maps to a unique set of N possible cache locations
- Valid flag + Tag overhead for every block in set

Fully Associative Cache
←−−−−−−−−− Block number −−−−−−−−−→

Tag Offset
Block can be placed anywhere, but need to search all blocks

Cache Performance
• Rule of thumb: Direct-mapped cache of size N has

almost the same miss rate as 2-way set associative cache of
size N/2

• - Compulsory miss does not depend on size/associativity
- Conflict miss decreases with increasing associativity
- Capacity miss does not depend on associativity
- Capacity miss decreases with increasing size

• Block replacement policy
Least recently used (LRU): the usual policy, hard to track
First in first out (FIFO)
Random replacement (RR)
Least frequently used (LFU)

